首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3546篇
  免费   211篇
  国内免费   2篇
电工技术   28篇
综合类   1篇
化学工业   819篇
金属工艺   78篇
机械仪表   83篇
建筑科学   176篇
矿业工程   12篇
能源动力   128篇
轻工业   269篇
水利工程   36篇
石油天然气   8篇
无线电   270篇
一般工业技术   744篇
冶金工业   496篇
原子能技术   17篇
自动化技术   594篇
  2023年   49篇
  2022年   40篇
  2021年   171篇
  2020年   89篇
  2019年   87篇
  2018年   130篇
  2017年   117篇
  2016年   124篇
  2015年   105篇
  2014年   166篇
  2013年   264篇
  2012年   228篇
  2011年   289篇
  2010年   210篇
  2009年   170篇
  2008年   173篇
  2007年   184篇
  2006年   120篇
  2005年   104篇
  2004年   101篇
  2003年   89篇
  2002年   80篇
  2001年   45篇
  2000年   41篇
  1999年   39篇
  1998年   75篇
  1997年   69篇
  1996年   33篇
  1995年   35篇
  1994年   26篇
  1993年   26篇
  1992年   23篇
  1991年   15篇
  1990年   25篇
  1989年   18篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   18篇
  1984年   7篇
  1983年   13篇
  1982年   9篇
  1981年   10篇
  1980年   11篇
  1979年   8篇
  1977年   9篇
  1976年   20篇
  1975年   8篇
  1974年   8篇
  1939年   5篇
排序方式: 共有3759条查询结果,搜索用时 15 毫秒
31.
There have been few attempts, so far, to document the history of artificial intelligence. It is argued that the historical sociology of scientific knowledge can provide a broad historiographical approach for the history of AI, particularly as it has proved fruitful within the history of science in recent years. The article shows how the sociology of knowledge can inform and enrich four types of project within the history of AI; organizational history; AI viewed as technology; AI viewed as cognitive science and historical biography. In the latter area the historical treatments of Darwin and Turing are compared to warn against the pitfalls of rational reconstructions of the past.  相似文献   
32.
We are investigating semantically configurable model-driven engineering (MDE). The goal of this work is a modelling environment that supports flexible, configurable modelling notations, in which specifiers can configure the semantics of notations to suit their needs and yet still have access to the types of analysis tools and code generators normally associated with MDE. In this paper, we describe semantically configurable code generation for a family of behavioural modelling notations. The family includes variants of statecharts, process algebras, Petri Nets, and SDL88. The semantics of this family is defined using template semantics, which is a parameterized structured operational semantics in which parameters represent semantic variation points. A specific notation is derived by instantiating the family’s template semantics with parameter values that specify semantic choices. We have developed a code-generator generator (CGG) that creates a suitable Java code generator for a subset of derivable modelling notations. Our prototype CGG supports 26 semantics parameters, 89 parameter values, and 7 composition operators. As a result, we are able to produce code generators for a sizable family of modelling notations, though at present the performance of our generated code is about an order of magnitude slower than that produced by commercial-grade generators.  相似文献   
33.
Conclusion Significant improvements are required in the performance of MSW dispersive delay lines and filter banks before they are ready for systems application. Typically delay lines with bandwidths of 1 GHz or greater, differential delays in the range 200 ns to 1s, and minimum phase errors (<±1 °) are required for large (40 dB) dynamic range compressive receivers. However, techniques are evolving (see rest of this issue) in this relatively new area of technology which will allow systems performance requirements on phase errors to be met. Possible approaches to low phase error dispersive delay lines include reflective arrays, stepped ground planes, and multiple YIG films. The stepped ground plane technique is the most advanced and uses an optimization approach to the delay-line design, which results in a minimum phase error [20]. Ultimately the minimum achievable phase error will be limited by reflections from transducers and multiple mode effects in the delay lines. The MSW compressive receiver requires parallel advances in high-speed digital processing techniques to achieve its full potential.The MSW filter bank provides a simple channelization technique applicable up to approximately 20 GHz. Narrowband channels with 10 dB insertion loss, 3 dB bandwidths of 10 to 40 MHz, and 50 dB bandwidths of 30 to 120 MHz are possible with the already demonstrated techniques. Broader bandwidth channels in the range 50 to 200 MHz with flat passband response require improved transducer design techniques. The channelized receiver does not require extremely high-speed operations but, since a large number of channels are involved, size and cost become very significant.  相似文献   
34.
The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.  相似文献   
35.
The present study aimed to synthesize novel polycationic polymers composed of N-substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)n-O2Oc-NH2, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.4, and 0.19 µM, respectively) and were not cytotoxic to HB2 and MDA-MB-231 cells. Selected compounds used in the transfection of a GFP plasmid showed high transfection efficacy and minimal cytotoxicity. Their interaction with plasmid DNA and the increasing length of the main chain of tested compounds strongly influenced the organization and shape of the flower-like nanostructures formed, which were unique for 5/6-FAM-O2Oc-[Dap(GO2)]8-O2Oc-NH2 and typical for large proteins.  相似文献   
36.
Acute myocardial infarction (MI) is one of the most common causes of death worldwide. Pituitary adenylate cyclase activating polypeptide (PACAP) is a cardioprotective neuropeptide expressing its receptors in the cardiovascular system. The aim of our study was to examine tissue PACAP-38 in a translational porcine MI model and plasma PACAP-38 levels in patients with ST-segment elevation myocardial infarction (STEMI). Significantly lower PACAP-38 levels were detected in the non-ischemic region of the left ventricle (LV) in MI heart compared to the ischemic region of MI-LV and also to the Sham-operated LV in porcine MI model. In STEMI patients, plasma PACAP-38 level was significantly higher before percutaneous coronary intervention (PCI) compared to controls, and decreased after PCI. Significant negative correlation was found between plasma PACAP-38 and troponin levels. Furthermore, a significant effect was revealed between plasma PACAP-38, hypertension and HbA1c levels. This was the first study showing significant changes in cardiac tissue PACAP levels in a porcine MI model and plasma PACAP levels in STEMI patients. These results suggest that PACAP, due to its cardioprotective effects, may play a regulatory role in MI and could be a potential biomarker or drug target in MI.  相似文献   
37.
This study evaluated the direct effect of a phytochemical, hesperidin, on pre-osteoblast cell function as well as osteogenesis and collagen matrix quality, as there is little known about hesperidin’s influence in mineralized tissue formation and regeneration. Hesperidin was added to a culture of MC3T3-E1 cells at various concentrations. Cell proliferation, viability, osteogenic gene expression and deposited collagen matrix analyses were performed. Treatment with hesperidin showed significant upregulation of osteogenic markers, particularly with lower doses. Mature and compact collagen fibrils in hesperidin-treated cultures were observed by picrosirius red staining (PSR), although a thinner matrix layer was present for the higher dose of hesperidin compared to osteogenic media alone. Fourier-transform infrared spectroscopy indicated a better mineral-to-matrix ratio and matrix distribution in cultures exposed to hesperidin and confirmed less collagen deposited with the 100-µM dose of hesperidin. In vivo, hesperidin combined with a suboptimal dose of bone morphogenetic protein 2 (BMP2) (dose unable to promote healing of a rat mandible critical-sized bone defect) in a collagenous scaffold promoted a well-controlled (not ectopic) pattern of bone formation as compared to a large dose of BMP2 (previously defined as optimal in healing the critical-sized defect, although of ectopic nature). PSR staining of newly formed bone demonstrated that hesperidin can promote maturation of bone organic matrix. Our findings show, for the first time, that hesperidin has a modulatory role in mineralized tissue formation via not only osteoblast cell differentiation but also matrix organization and matrix-to-mineral ratio and could be a potential adjunct in regenerative bone therapies.  相似文献   
38.
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization—12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.  相似文献   
39.
Metallurgical and Materials Transactions A - Variant pairing in bainite was evaluated in four different commercial low alloy steels with medium to high carbon content. The steels investigated were...  相似文献   
40.
Nonmetal oxidation catalysts have gained much attention in recent years. The reason for this surge in activity is 2-fold: On one hand, a number of such catalysts has become readily accessible; on the other hand, such catalysts are quite resistant toward self-oxidation and compatible under aerobic and aqueous reaction conditions. In this review, we have focused on five nonmetal catalytic systems which have attained prominence in the oxidation field in view of their efficacy and their potential for future development; stoichiometric cases have been mentioned to provide overview and scope. Such nonmetal oxidation catalysts include the alpha-halo carbonyl compounds 1, ketones 2, imines 3, iminium salts 4, and nitroxyl radicals 5. In combination with a suitable oxygen source (H2O2, KHSO5, NaOCl), these catalysts serve as precursors to the corresponding oxidants, namely, the perhydrates I, dioxiranes II, oxaziridines III, oxaziridinium ions IV, and finally oxoammonium ions V. A few of the salient features about these nonmetal, catalytic systems shall be reiterated in this summary. The first class entails the alpha-halo ketones, which catalyze the oxidation of a variety of organic substrates [figure: see text] by hydrogen peroxide as the oxygen source. The perhydrates I, formed in situ by the addition of hydrogen peroxide to the alpha-halo ketones, are quite strong electrophilic oxidants and expectedly transfer an oxygen atom to diverse nucleophilic acceptors. Thus, alpha-halo ketones have been successfully employed for catalytic epoxidation, heteroatom (S, N) oxidation, and arene oxidation. Although high diastereoselectivities have been achieved by these nonmetal catalysts, no enantioselective epoxidation and sulfoxidation have so far been reported. Consequently, it is anticipated that catalytic oxidations by perhydrates hold promise for further development, especially, and should ways be found to transfer the oxygen atom enantioselectively. The second class, namely, the dioxiranes, has been extensively used during the last two decades as a convenient oxidant in organic synthesis. These powerful and versatile oxidizing agents are readily available from the appropriate ketones by their treatment [figure: see text] with potassium monoperoxysulfate. The oxidations may be performed either under stoichiometric or catalytic conditions; the latter mode of operation is featured in this review. In this case, a variety of structurally diverse ketones have been shown to catalyze the dioxirane-mediated epoxidation of alkenes by monoperoxysulfate as the oxygen source. By employing chiral ketones, highly enantioselective (up to 99% ee) epoxidations have been developed, of which the sugar-based ketones are so far the most effective. Reports on catalytic oxidations by dioxiranes other than epoxidations are scarce; nevertheless, fructose-derived ketones have been successfully employed as catalysts for the enantioselective CH oxidation in vic diols to afford the corresponding optically active alpha-hydroxy ketones. To date, no catalytic asymmetric sulfoxidations by dioxiranes appear to have been documented in the literature, an area of catalytic dioxirane chemistry that merits attention. A third class is the imines; their reaction with hydrogen peroxide or monoperoxysulfate affords oxaziridines. These relatively weak electrophilic oxidants only manage to oxidize electron-rich substrates such as enolates, silyl enol ethers, sulfides, selenides, and amines; however, the epoxidation of alkenes has been achieved with activated oxaziridines produced from perfluorinated imines. Most of the oxidations by in-situ-generated oxaziridines have been performed stoichiometrically, with the exception of sulfoxidations. When chiral imines are used as catalysts, optically active sulfoxides are obtained in good ee values, a catalytic asymmetric oxidation by oxaziridines that merits further exploration. The fourth class is made up by the iminium ions, which with monoperoxysulfate lead to the corresponding oxaziridinium ions, structurally similar to the above oxaziridine oxidants except they possess a much more strongly electrophilic oxygen atom due to the positively charged ammonium functionality. Thus, oxaziridinium ions effectively execute besides sulfoxidation and amine oxidation the epoxidation of alkenes under catalytic conditions. As expected, chiral iminium salts catalyze asymmetric epoxidations; however, only moderate enantioselectivities have been obtained so far. Although asymmetric sulfoxidation has been achieved by using stoichiometric amounts of isolated optically active oxaziridinium salts, iminium-ion-catalyzed asymmetric sulf-oxidations have not been reported to date, which offers attractive opportunities for further work. The fifth and final class of nonmetal catalysts concerns the stable nitroxyl-radical derivatives such as TEMPO, which react with the common oxidizing agents (sodium hypochlorite, monoperoxysulfate, peracids) to generate oxoammonium ions. The latter are strong oxidants that chemoselectively and efficiently perform the CH oxidation in alcohols to produce carbonyl compounds rather than engage in the transfer of their oxygen atom to the substrate. Consequently, oxoammonium ions behave quite distinctly compared to the previous four classes of oxidants in that their catalytic activity entails formally a dehydrogenation, one of the few effective nonmetal-based catalytic transformations of alcohols to carbonyl products. Since less than 1 mol% of nitroxyl radical is required to catalyze the alcohol oxidation by the inexpensive sodium hypochlorite as primary oxidant under mild reaction conditions, this catalytic process holds much promise for future practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号